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A Comment on the Mechanism of Enantiotopomerization of Tetrahedral
Boron Chelates; Model MNDO Calculations

Paul von Ragué Schleyer* and Ernst-Ulrich Wirthwein
Institut far Organische Chemie der Friedrich-Alexander-Universitit Erlangen-Nirnberg, Henkestrasse 42,

D-8520 Erlangen, B.R.D.

The experimentally observed enantiotopomerization of diarylboron salicylideneaminato-chelates (1) are
indicated by model MNDO calculations not to proceed via planar tetraco-ordinate boron transition states (2),

but rather by ring opening—ring closure mechanisms.

Detailed theoretical studies of planar tetraco-ordinate forms
involving main group elements!-? are now inspiring experi-
mental investigations.>»* Although normal tetrahedral geo-
metries are preferred energetically, generally by large amounts,
appropriate substituents may stabilise the planar forms
sufficiently to permit experimental detection.!

Minkin’s group has just reported a study of the enantio-
topomerization of diarylboron salicylideneaminato-chelates
(1).® A planar tetraco-ordinate boron transition state (2) was
postulated. Instead, we suggest a rather trivial mechanistic
alternative, ring opening to (3) combined with rotation around
the O-B bond and reclosure.

We have examined Minkin’s system by means of MNDO
calculations on the simplified models, (4)—(7). MNDO, the
most reliable and general semiempirical LCAO-SCF method,
has been tested widely and should be adequate for this
purpose.® The initial state model (4) was found to have a
classical structure (details are shown in the structural formula),
and a rather low heat of formation, —207.1 kJ/mol. A planar
structure corresponding to (5) was submitted, but the
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geometry-optimisation routines inherent in the MNDO pro-
gram led automatically to B-N bond rupture and ring opening.
Structure (6) [AH;(MNDQ) = —81.0 kJ/mol] was obtained
by imposing C, symmetry. No stationary point with a planar
(or slightly pyramidal) tetraco-ordinate boron could be located
on the potential energy surface. To simulate the reaction
pathway, the B-N distance was lengthened sequentially and
no other symmetry constraints imposed. Various twisted open
forms resulted with heats of formation in the —90 to —110
kJ/mol range. A planar s-trans structure (7), AHi(MNDQ) =
—113.9 kJ/mol was a second minimum. While we have not
located the transition state for an enantiotopomerization
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explicitly, its energy probably is similar., We note that the
calculated energy difference between (4) and (7), 93 kJ/mol,
agrees quite well with the activation energies for (1) found
experimentally. The experimental activation entropies (mostly
23—36 J mol—! K1)® seem more in accord with a ring-opened
transition state than with a process involving simple rotation
around the boron centre.

Our model calculations on (4)—(7) involve hydrogen sub-
stituents on boron. In the experimental system (1), the R? and
R3 substituents are much more bulky aryl groups. Steric
factors alone make structures like (2) unlikely. Our calcula-
tions indicate that B-N bonding in such hypothetical planar
arrangements also is unfavourable energetically.

As we have shown in similar®? and in other contexts,® it is
desirable to test mechanistic and structural proposals with
readily available and easily applied theoretical calculational
methods. Like (5) [and (2)], we have examined many planar
tetraco-ordinate candidates by calculations, but have found
them to prefer classical structures with lower co-ordination
instead. Cumulene perimeter systems? and planar phenonium
ions’ afford examples.
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